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ABSTRACT

Inspired by previous works (He et al.), we propose modality swap, a training
strategy in which language models use their textual reasoning and coding capabil-
ities to generate synthetic LaTeX tables that are rendered into images and then
used for visual reasoning training. This setup allows smaller VLMs to contribute
to their own improvement by transferring competence from text (structured gener-
ation and code) to vision (reasoning over rendered tables). We instantiate this idea
with Visual-TableQA, built through a modular, scalable, and fully autonomous
pipeline. Multiple LLMs coordinate across roles—generation, validation, and
inspiration (cross-model prompting)—to produce 2.5k richly structured LaTeX-
rendered tables and 9k reasoning-intensive QA pairs at a cost under $100. The
pipeline includes LLM-jury filtering and cross-model inspiration, where stronger
models propose structural seeds and topics that other models elaborate.
In experiments, models fine-tuned on Visual-TableQA show robust generalization
to external benchmarks; in some settings, results are competitive with or exceed
proprietary baselines. An ablation also indicates higher scores when queries are
presented in textual rather than visual form, consistent with the intended cross-
modal transfer from text to vision.

1 INTRODUCTION

Question: In the context of the schematic dia-
gram provided, what is the role of the modifier in
the lighting setup, and how does its placement af-
fect the light path to the subject?

Answer: [...] Its role is to alter the quality or
direction of light from the light source (yellow el-
lipse) before it reaches the subject (orange circle).
The diagram shows the light path with arrows: the
light travels from the source to the modifier, then
from the modifier to the subject, and finally to
the camera (gray circle). This placement indicates
that the modifier diffuses or redirects the light to
achieve a desired effect on the subject, such as
softening harsh shadows or adjusting intensity.

Figure 1: Sample question in our benchmark

Vision-language models (VLMs) have significantly advanced in recent years, achieving remark-
able performance in various tasks involving visual and textual inputs. Despite these advancements,
complex reasoning tasks, especially those requiring deep comprehension of tabular data structures,
continue to pose significant challenges. Table complexity can manifest in various ways, including
structural layout, information density, and the diversity of visual components such as the integration
of diagrams. The more complex a table is, the more it lends itself to challenging reasoning tasks,
requiring advanced cognitive abilities to extract relevant information and perform multi-step logical
analysis. For example, the table in Figure 1 exemplifies this complexity through its use of multi-
row cells, integrated diagrams, and color encoding. Answering the question requires the VLM to
interpret information across all cells and perform a sequence of reasoning steps.
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Existing table-based QA datasets predominantly fall into two categories: (i) those represented
purely in textual format—such as WikiTableQuestions Pasupat & Liang (2015), HybridQA Chen
et al. (2020b), and AIT-QA Katsis et al. (2022)—which bypass the challenges of visual layout
interpretation; and (ii) those that lack diversity in visual layouts, visual complexity, and reason-
ing depth due to being domain-specific (e.g., TAT-DQA Zhu et al. (2022)), or having standard-
ized queries (e.g., TableVQA-Bench Kim et al. (2024)), or highly technical in nature (e.g., Table-
VQA Tom Agonnoude (2024)). This second datasets category typically rely on a limited set of
layout templates and involve relatively simple visual tasks or basic QA scenarios, falling short of
the complexity required for thorough evaluation and advancement of reasoning capabilities. More
recent efforts—such as ChartQA Masry et al., ReachQA He et al., and MATH-Vision Wang et al.
(2024b)—have aimed to address the need for open-domain coverage, incorporating more diverse
visual features, varied question types, and deeper reasoning challenges. However, these datasets pri-
marily focus on charts and function plots, overlooking tables—and with them, an entire dimension
of informational structure and layout diversity. An extensive comparison of diverse chart and table
datasets is provided in Table 1.

Inspired by ReachQA’s Code-as-Intermediary Translation (CIT)—a technique that translates chart
images into textual representations while faithfully preserving visual features—we introduce Visual-
TableQA, a novel synthetic, multimodal, and open-domain dataset tailored to enhance reasoning
capabilities through complex table-based question-answering tasks. Visual-TableQA capitalizes on
the ability of reasoning-oriented LLMs to generate intricate LaTeX tables, thus significantly reduc-
ing costs and eliminating the need for extensive manual annotations. This modality-swap makes
it possible for LLMs to invest their textual reasoning ability into visual image in order to improve
visual understanding and reasoning. Visual-TableQA emphasizes structural reasoning over domain
knowledge. Each entry couples a rendered table image with a complex, visually grounded reason-
ing task. Tasks require interpreting visual layout cues such as cell alignment, hierarchical headers,
merged cells, or embedded symbolic content—emulating real-world documents where visual con-
text is essential for correct interpretation. The dataset contains 2.5k reasoning-intensive tables and
9k QA pairs crafted to assess both information extraction and multi-step reasoning capabilities, all
generated at a cost of under $100. The entire dataset has been validated using a committee of high-
performing reasoning LLMs, the ROSCOE step by step reasoning score Golovneva et al., and a
sample of 800 QA pairs has undergone manual verification by human annotators. In contrast to
previous synthetic datasets, Visual-TableQA is less guided in its generation process, allowing for
more diversity and creativity in both table complexity (e.g., structural layout, information density,
visual component variety) and the design of QA pairs explicitly crafted to challenge visual reasoning
skills. We evaluated a broad range of VLMs, from lightweight models to state-of-the-art architec-
tures, and benchmarked their performance against existing datasets. The results show that most
VLMs continue to struggle with table understanding.

In sum, our main contributions are:(i) a high-quality, visually diverse, and open-domain dataset for
table-based reasoning; (ii) an LLM-driven, low-cost generation pipeline using cross-model inspira-
tion; (iii) an empirical analysis comparing Visual-TableQA to existing table and chart datasets; (iv)
an extensive evaluation of open and proprietary VLMs, showing performance gains after finetun-
ing. Our dataset and code are publicly available at https://github.com/AI-4-Everyone/
Visual-TableQA.

2 VISUAL-TABLEQA DATASET

Unlike previous datasets that rely heavily on textual input or handcrafted annotations, Visual-
TableQA leverages a scalable generation pipeline rooted in LaTeX-rendered table images, auto-
mated reasoning task creation, and LLM-based evaluation. This strategy enables high diversity and
reasoning depth while keeping annotation costs minimal, totaling under $100 using a combination
of open-access APIs and limited usage tiers. In this section, we describe our LaTeX-based table
encoding 2.1, the data generation pipeline 2.2, and the quality assurance process 2.3.

2.1 MODALITY-SWAP: TABLE REPRESENTATION IN LATEX

Our approach is inspired by He et al., which demonstrated that state-of-the-art VLMs can reason
about visual content even in the absence of explicit visual input. Building on this insight, and
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Table 1: Comparison of existing chart and table datasets across data, Q&A, and dataset properties.
Abbreviations: Repr=Representation, Vis= Visual, Comp= Complexity, Temp = Template, Refer =
Reference, Rat = Rational, Synth= Synthetic, Scal = Scalable. Cells marked with ▲indicate mixed
attributes (e.g., partially template-based; scalable Q&A but non-scalable chart data)

Datasets

Data Properties Q&A Properties Dataset Properties

#
Layouts/
# Topics

Type Data
Repr.

Vis.
Comp.

Temp.
Free

Vis.
Re-
fer.

Rat.
An-
not.

Synth. #Samples
/ #QA

Scal.

WikiTableQuestions (Pasupat &
Liang, 2015)

– Table Text ✗ ✗ ✗ ✗ ✗ 2.1k/22k ✗

HybridQA (Chen et al., 2020b) – Table Text ✗ ✓ ✗ ✗ ✗ 13k/70k ✗
AIT-QA (Katsis et al., 2022) –/1 Table Text ✗ ✓ ✗ ✗ ✗ 116/515 ✗

TAT-DQA (Zhu et al., 2022) –/1 ▲ Image ✗ ✓ ✓ ✓ ✗ 2.5k/16.5k ✗
Table-VQA (Tom Agonnoude,
2024)

–/– Table Image ✗ ✓ ✓ ✓ ✓ 16.4k/82.3k –

TableVQA-Bench (Kim et al.,
2024)

11/4 Table Image ✗ ✓ ✓ ✗ ▲ 894/1.5k ▲
ChartQA (Masry et al.) 3/15 Chart Image ✗ ✓ ✓ ✗ ✗ 21.9k/32.7k ✗

DocVQA (Mathew et al., 2020) 20/5 ▲ Image ✗ ✓ ✓ ✗ ✗ 12.7k/50k ✗

MultiModalQA (Talmor et al.,
2021)

16/∞ ▲ Image ✗ ✗ ✓ ✗ ▲ 29,918 ✗

MATH-Vision (Wang et al.,
2024b)

–/16 ▲ Image ✓ ✓ ✓ ✗ ✗ 3k/3k ✗

REACHQA (He et al.) 32/∞ Chart Image ✓ ✓ ✓ ✓ ✓ 3.7k/22k ✓

Visual-TableQA (ours) /∞ Table Image ✓ ✓ ✓ ✓ ✓ 2.5k/ 9k ✓

Table 2: Model performances on Visual-TableQA and Visual-TableQA-CIT. Visual-TableQA-CIT
is the variant of our dataset where tables are represented in LaTeX code form rather than as rendered
images.

Models GPT-4o GPT-4o
mini

Gemini
2.5 Flash

Gemini
2.5 Pro

Claude
3.5 Son-
net

Llama 4
Maverick
17B-128E

Mistral
Small 3.1
24B

Qwen2.5-
VL-32B

Visual-TableQA 81.0 67.0 86.63 85.63 82.46 80.75 73.2 79.69
Visual-
TableQA-CIT

90.25 86.69 89.9 88.71 88.5 87.0 84.72 85.44

leveraging the strong coding capabilities of reasoning-oriented language models across multiple
programming languages, we chose to use an intermediate representation of tables in LaTeX rather
than directly generating rendered table images. This strategy enables the generation of complex
visual tables as compact LaTeX code—typically around 100 lines per table—drastically reducing
the cost of generation by minimizing the number of output tokens required in API calls. We refer
to this as modality-swap: LLMs leverage their textual reasoning abilities (e.g., code understanding
and structured generation) to construct visual content, design to improve visual reasoning skills. The
ablation study in Table 2 supports this hypothesis: most state-of-the-art models perform better when
queries are presented in textual rather than visual form. This highlights both a gap in current visual
reasoning capabilities and the potential for cross-modal transfer from text to vision.

Table 3 presents the performance of various models in generating LaTeX tables that compile without
errors. Our observations align with those of Kale & Nadadur (2025), who reported that LLMs
struggle with LaTeX generation—particularly as task complexity increases, leading to a notable
drop in accuracy.

2.2 DATA GENERATION PIPELINE

This section provides a detailed description of the generation pipeline. Figure 2 gives an overview
of the whole process.

Seed Tables and Topics Collection: The first step involves collecting a diverse set of table layouts to
serve as inspiration for LLMs during the generation process. We explored various sources, including
scientific journals, financial report databases, online newspapers, and table design galleries. Our
search included both table and diagram images to introduce greater visual and structural complexity

3
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Table 3: Percentage of successful LaTeX compilations for various models. Each accuracy is com-
puted from at least 500 generated samples. The Adjust column indicates the level of manual cor-
rection needed to make the table look good: Low means minimal or no adjustments, Medium cor-
responds to 3–5 required fixes, and High indicates more than 5 adjustments were necessary. The
tables generated by DeepSeek-R1-Distill-Qwen-32B never compiled.

Model Acc.
(%)

Adjust Model Acc.
(%)

Adjust

Llama 4 Maverick 17B-128E Instruct Meta
AI (2025)

69 High DeepSeek-R1-Distill-Qwen-32B DeepSeek-
AI (2025)

0.0 –

Gemini 2.0 Flash Google (2025a) 65.7 Low DeepSeek-R1T-Chimera TNG Technology
Consulting GmbH (2025)

43.4 Medium

Gemini 2.5 Flash Google (2025b) 43 Medium Claude Sonnet 4 Anthropic (2025) 56 Low
Gemini 2.5 Pro Google (2025c) 19.6 Low Claude 3.5 Haiku Anthropic (2024) 64.4 Low
GPT-4.1 OpenAI (2025a) 41.5 Low Grok 3 Beta xAI (2025) 47.3 Low
Qwen3-30B-A3B Qwen Team (2025a) 69.4 Low Reka Flash 3 Reka AI (2025) 19.3 Medium
Qwen-QwQ-32B Qwen Team (2025b) 38.2 Low

Figure 2: Overview of the full pipeline architecture of Visual-TableQA. A subset of initial table
images is first converted to LaTeX using a visual language model (VLM-0). The resulting LaTeX
code, along with topic prompts, is then passed to a language model (LLM-1) to generate new, diverse
tables. These newly generated tables are used as inputs for further iterations of table generation. All
generated tables are then submitted to a second language model (LLM-2), which produces corre-
sponding question-answer pairs. Finally, the QA pairs are evaluated by a jury of high-performing
LLMs, and their quality is assessed using the ROSCOE score.

into the dataset. We selected 20 representative images (Figure 6a) and passed them to a visual
language model, VLM-0 (GPT-o3 OpenAI (2025)), to generate accurate LaTeX representations.
In parallel, we used LLM-0 (GPT-4o) OpenAI (2024) to generate a list of 5,000 distinct topic
prompts. These initial table samples and topics serve as the first layer of inspiration for subsequent
LLM generations—though the pool of inspirations expands automatically, as detailed in Section 2.2.
For reproducibility, all resources are publicly available in our GitHub repository.

Table Generation: For each iteration, we randomly select an LLM-1 from the models short-list
presented in Table 3. The model receives one table sample from our pool and three topics randomly
selected from the topic list, all delivered through a single instruction prompt. The output from
LLM-1 is returned as a JSON file containing three newly generated LaTeX-formatted tables in plain
text, each corresponding to one of the provided topics. We require that the generated tables be
inspired by the input table but include substantial layout variations and, when appropriate, additional
data to enhance complexity. The resulting LaTeX code is then compiled using standard LaTeX
compilation stack (pdflatex + pdf2image), and cropped to produce high-resolution table images. A
human reviewer then inspects the table and makes adjustments to the LaTeX code if necessary. The
prompt used for generation are provided in Figure 7.

Evolving Layouts through Iterations: A subset of the generated tables is manually selected to
enrich the pool of table inspirations. This feedback loop encourages the emergence of increasingly
complex and diverse layouts by amplifying visual variations and enabling cross-model inspiration
across different LLM-1s over successive iterations. This process is facilitated by the fact that LLMs
differ in architecture and tend to focus on distinct structural and stylistic aspects of tables. As a
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result, combining inspirations across models leads to highly diversified and creative layout types.
We refer to this phenomenon as cross-model prompting (‘inspiration’).

QA Generation: Next, for each generated table, we randomly select a model, denoted LLM-2,
from the same list of models in Table 3 to generate three QA pairs. The model receives the table
in LaTeX format and is instructed to produce questions that require multi-step reasoning, pattern
recognition, and symbolic interpretation. For instance, the sample in Figure 1 illustrates how the
questions extend beyond basic information extraction, requiring interpretative reasoning to identify
patterns within the presented data. We do not fact-check the generated tables; as a result, some table
content may be non-factual. While this is important to consider when using the dataset for training,
it can be beneficial, as it encourages models to rely on reasoning rather than prior knowledge.

2.3 QUALITY ASSURANCE

To ensure the validity of the tables and QA pairs, a panel of independent LLMs—serving as a
reasoning jury—evaluates each table and its associated QA pairs by providing binary correct-
ness judgments. The evaluation is based on four criteria: (i) the generated document is a valid
table and is relevant to the given topic; (ii) the table and any associated figures are coherent
and meaningful; (iii) the question is fully grounded in the table, requiring no external knowl-
edge; and (iv) the answer is completely supported by the table content. If any of these four
criteria are not met, the corresponding table and its QA pairs are discarded. The LLM jury in-
cludes Mistral-large, Deepseek-v3.1 DeepSeek-AI et al. (2025), Gemini-2.5-pro,
GPT-4.1, and Deepcogito-v2—models chosen for their strong reasoning abilities. Final ac-
ceptance is determined via majority vote across the jury. The prompt used is provided in Figure 9.

The next step involved computing the ROSCOE reasoning scores as introduced in Golovneva et al..
These metrics assess the coherence, logical soundness, and contextual grounding of step-by-step
generated rationales. The ROSCOE framework encompasses thirteen evaluation criteria, which we
report in Table 8 along with their corresponding values computed over our dataset. The results in-
dicate near-perfect alignment with the expected directionality of each metric, supporting the overall
quality of the generated reasoning chains.

Test Set Construction and Human Evaluation: The dataset was divided into three subsets: train-
ing, validation, and testing. To prevent data leakage, all entries {table, question, answer} derived
from a single table were assigned to the same subset. The testing set was also used for human evalu-
ation. Two human annotators—each holding at least a Master’s degree and with prior experience in
data annotation—were hired to evaluate the quality of 800 QA pairs. Each QA pair was assessed for
validity and rated on a scale from 1 to 5. Overall, 92% of the evaluated QA pairs received a rating
of at least 4 stars from both annotators.

3 EXPERIMENTS

3.1 BENCHMARK COMPARISON

Evaluated Benchmarks and Model Selection: We evaluate a range of state-of-the-art rea-
soning VLMs on Visual-TableQA and compare their performance across three other bench-
marks focused on table and chart-based visual question answering: ChartQA Masry et al.,
ReachQA He et al., and MATH-Vision Wang et al. (2024b). Our model selection in-
cludes powerful proprietary models such as GPT-4o, GPT-4o Mini OpenAI (2025b),
Gemini 2.5 Flash, Gemini 2.5 Pro, and Claude 3.5 Sonnet, as well as open-
source models like LLaMA 4 Maverick 17B-128E Instruct, Mistral Small 3.1
24B Instruct Mistral AI (2025), Qwen2.5-VL-32B-Instruct Chen et al. (2024a),
Qwen2.5-VL-7B-Instruct Team (2025), LLaVA-Next-Llama3-8B Li et al. (2024),
MiniCPM-V2.5-Llama3 Yao et al. (2024), and InternVL2-8B Chen et al. (2024b). Where
performance metrics were available, we did not re-evaluate models on these datasets; instead, we
report the results published in the original papers, official leaderboards, or model cards. For all other
cases, we carefully fine-tuned and evaluated the models following the instructions provided in their
respective official GitHub repositories.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Evaluation Protocol: All models are evaluated on the test sets of the four selected datasets. Each
model receives image-question pairs, formatted within a unified prompt that includes a system mes-
sage tailored to elicit the model’s reasoning capabilities (Section G.1). For the Visual-TableQA
dataset, we additionally construct a variant in which data is provided not as rendered images but in
LaTeX code format. This textual-code version is referred to as Visual-TableQA-CIT.

For LLaVA-Next-Llama3-8B, MiniCPM-V2.5-Llama3, InternVL2-8B, and
Qwen2.5-VL-7B-Instruct, we conducted two supervised fine-tuning (SFT) experi-
ments: (i) using the ReachQA training split (denoted as Model Name + ReachQA) and (ii)
using the Visual-TableQA training split (denoted as Model Name + Visual-TableQA). We
applied Low-Rank Adapters (LoRA) Hu et al. to all linear layers, following the SFT setup and
hyperparameters described in the He et al. GitHub repository when possible (Section H) in order
to make a fair comparison. The fine-tuning phase for all models was limited to one epoch to
ensure consistency and reduce overfitting. Exceptionally, we adopted a custom two-phase LoRA
fine-tuning strategy for Qwen2.5-VL-7B-Instruct (see Section H), as this model was not
included in the evaluation of He et al., and to better accommodate the relatively small size of our
dataset.

All models are allocated a maximum of 5,000 tokens during inference to accommodate extended
chain-of-thought reasoning. Model responses are evaluated using the same jury of high-performing
VLMs and majority-vote protocol as described in Section 2.3. The jury confidence score, computed
as the ratio of the highest vote count to the total jury size, averages above 0.93 (Figure 11b) for all
models and all datasets. In addition, evaluations are run twice, to ensure reproducibility.

3.2 EXPERIMENTATION RESULTS

Table 4: Model performance on the test sets of four benchmarks: ChartQA, ReachQA, MATH-
Vision, Visual-TableQA, and Visual-TableQA-CIT. Visual-TableQA-CIT is the variant of our
dataset where tables are represented in LaTeX code form rather than as rendered images. The
ReachQA score is reported as the average across its two evaluation splits: Reasoning and Recog-
nition. The values in blue are from our own evaluation using the LLM jury, while the remaining
values are taken from model authors or official leaderboards/model cards. When a fine-tuned model
achieves better performance, the result is annotated with ↑; if the performance worsens, it is marked
with ↓. The best performance for each model variants and task is in bold.

Models ChartQA ReachQA MATH-
VisionFULL

Visual-
TableQA

Visual-
TableQA-CIT

Baseline
Human – 74.85 68.82 – –

Proprietary VLMs
GPT-4o 85.7 53.25 30.39 81.0 90.25
GPT-4o mini 77.52 40.35 28.85 67.0 86.69
Gemini 2.5 Flash 84.64 56.97 41.3 86.63 89.9
Gemini 2.5 Pro 87.67 60.88 73.3 85.63 88.71
Claude 3.5 Sonnet 90.8∗ 63 32.76 82.46 88.5

Open-Source VLMs
Llama 4 Maverick 17B-128E Instruct 85.3∗ 47.98 45.89 80.75 87.0
Mistral Small 3.1 24B Instruct 86.24∗ 42.45 32.45 73.2 84.72
Qwen2.5-VL-32B-Instruct 79.75 49.5 38.1 79.69 85.44
Qwen2.5-VL-7B-Instruct 87.3∗ 44.7 25.1 69.5 –

Finetuned VLMs
Qwen2.5-VL-7B-Instruct + Visual-TableQA 84.52↑ 60.95 ↑ 49.77 ↑ 82.98 ↑ N/A
Qwen2.5-VL-7B-Instruct + ReachQA 77.59 ↓ 55.75 ↑ 48.57 ↑ 56.13 ↓ N/A

* Performance metrics are measured using Relaxed Accuracy, which allows for small numerical deviations
in the predicted answers. We assume that this accuracy inflates the actual accuracy by at least 5%. This
margin is subtracted when selecting the best-performing results, which are shown in bold.

The average models accuracies are displayed in Table 4. These results reveal that:

Visual-TableQA Effectively Evaluates Visual Reasoning Capabilities: Model performances on
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Figure 3: Correlation of model rankings on Visual-TableQA with those on three established
datasets—ChartQA (recognition-focused), ReachQA (balanced), and MATH-Vision (reasoning-
focused)—using Spearman’s ρ and Kendall’s τ metrics. Higher values indicate stronger alignment
in model performance trends. Visual-TableQA shows strong correlation with ReachQA, suggest-
ing it effectively balances both visual recognition and reasoning, while its weaker correlation with
ChartQA and MATH-Vision highlights its unique position as a comprehensive visual reasoning
benchmark.

Visual-TableQA follow similar trends to those observed on real-world, human-annotated datasets
such as ChartQA and MATH-Vision, suggesting that synthetic datasets can effectively evaluate rea-
soning capabilities. A direct comparison between Visual-TableQA and its textual variant, Visual-
TableQA-CIT, shows a notable performance gap: on average, models perform +6.26% better on
Visual-TableQA-CIT. This highlights the added challenge posed by the image-based format in
Visual-TableQA, demonstrating its effectiveness at testing visual reasoning over purely textual input.

To further validate Visual-TableQA as a reasoning benchmark, we compared model rankings across
datasets. For each dataset, we extracted the models (except the fine-tuned ones) performance rank-
ings and compared them to the rankings on Visual-TableQA using two correlation measures: (i)
Spearman’s ρ Lee Rodgers & Nicewander (1988): Captures monotonic consistency in rankings (re-
gardless of exact scores); (ii) Kendall’s τ Kendall (1948): Measures the fraction of concordant vs.
discordant ranking pairs and is more robust to ties. Both metrics range from −1 to 1, with values
closer to 1 indicating strong alignment in model rankings. To ensure fairness, we adjusted all scores
computed with Relaxed Accuracy by subtracting 5%, before comparison. The results are shown in
Figure 3.

Each dataset varies in how much it emphasizes visual recognition versus reasoning: (i) ChartQA →
Recognition-heavy, (ii) ReachQA → Balanced, (iii) MATH-Vision → Reasoning-heavy

Interestingly, Visual-TableQA rankings align most closely with ReachQA, but not with ChartQA
or MATH-Vision individually. This suggests that Visual-TableQA does not favor models that excel
solely at recognition or solely at reasoning. Instead, it rewards models capable of both—making it a
comprehensive benchmark for evaluating all aspects of visual reasoning.

Visual-TableQA Effectively Transfers to Other Benchmarks: To assess the transferabil-
ity of Visual-TableQA, we investigated how fine-tuning on Visual-TableQA impacts perfor-
mance across other benchmarks. As shown in Table 4, supervision from Visual-TableQA led
to significant generalization beyond its native domain. Notably, it improved the accuracy of
Qwen2.5-VL-7B-Instruct on ReachQA from 44.7% to 60.95%, and on MATH-Vision from
25.10% to 49.77%, despite these datasets not being explicitly table-focused. This finding is further
supported by Table 5, which reports similar gains in generalization across three additional models:
LLaVA-Next-Llama3-8B, MiniCPM-V2.5-Llama3, and InternVL2-8B.

However, this transferability is not reciprocal. Fine-tuning Qwen2.5-VL-7B-Instruct on
ReachQA alone yields only modest in-domain gains (44.7% → 55.75%) and leads to reduced perfor-
mance on both ChartQA and Visual-TableQA. This suggests that Visual-TableQA provides a more
generalizable reasoning signal—rooted in layout understanding, symbolic interpretation, and multi-
step reasoning—compared to standard benchmarks.
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Proprietary Models Outperform Open-Source Models on Average: Claude 3.5 Sonnet
achieves the highest performance across nearly all benchmarks. However, fine-tuning on Visual-
TableQA substantially narrows the gap between proprietary and open-source models. No-
tably, the performance of Qwen2.5-VL-7B-Instruct increases significantly across all eval-
uated benchmarks—surpassing several state-of-the-art proprietary models, including GPT-4o,
GPT-4o-mini, and Gemini 2.5 Pro.

4 DISCUSSION

4.1 VISUAL-TABLEQA VS REACHQA

Table 5: Performance of fine-tuned models on the two splits of the ReachQA test set: Recognition
(Reco) and Reasoning (Reas), each consisting of exactly 1,000 samples. Best performances per
model category are in bold. The values in blue are from our own evaluation using the LLM jury,
while the remaining values are taken from He et al..

Model Reco Reas Model Reco Reas

LLaVA-Next-Llama3-8B 17.9 6.5 InternVL2-8B 33.7 16.2
+ ReachQA 29.6 11.1 + ReachQA 49.8 21.3
+ Visual-TableQA 28.4 20.2 + Visual-TableQA 45.6 34.5

MiniCPM-V2.5-Llama3 25.3 10.3 Qwen2.5-VL-7B-Instruct 61.70 30.10
+ ReachQA 35.10 11 + ReachQA 69.6 40.30
+ Visual-TableQA 36.20 31.50 + Visual-TableQA 70.3 50.6

Average gains

+ ReachQA +11.25 +5.4
+ Visual-TableQA +10.35 +18.68

The ReachQA dataset is divided into two equally sized subsets: Recognition, which tests a model’s
ability to extract relevant information from charts, and Reasoning, which evaluates a model’s ca-
pacity to understand complex and abstract data structures. Table 5 reports the performance gains of
multiple fine-tuned models on these two tasks.

On average, models fine-tuned on ReachQA exhibit an accuracy improvement of +11.25 points
on the Recognition task and +5.4 points on the Reasoning task. In comparison, models fine-tuned
on Visual-TableQA show an average gain of +10.35 on Recognition—a comparable result—but a
significantly larger gain of +18.68 on Reasoning.

This stark contrast in reasoning performance can be attributed to the presence of high-quality ratio-
nales in Visual-TableQA annotations, along with the inclusion of more complex and diverse visual
structures. In other words, despite being roughly three times smaller than ReachQA in terms of
sample count, Visual-TableQA places a stronger emphasis on qualitative richness over quantity. As
a result, it appears to enable more effective knowledge distillation, particularly for tasks requiring
symbolic interpretation and multi-step reasoning.

4.2 VISUAL-TABLEQA’S ADVANTAGES COMPARED TO OTHER DATASETS

Table 1 shows that only a few table-focused QA datasets—namely TAT-DQA, Table-VQA, and
TableVQA-Bench—represent tables as rendered images. Visual-TableQA surpasses these by of-
fering richer layout diversity, broader topic coverage, systematic visual complexity, and high-
quality rationales. These attributes make it particularly effective for training models with trans-
ferable reasoning skills. Supporting this, models fine-tuned solely on Visual-TableQA—such
as LLaVA-Next-Llama3-8B—demonstrated significant gains on external benchmarks (Table-
VQA and TableVQA-Bench), as seen in Table 6.

Interestingly, Qwen2.5-VL-7B-Instruct did not follow the same performance trend: it
showed degradation on tasks such as VTabFact (Yes/No fact verification), VWTQ (Wikipedia table
retrieval), and VWTQ-Syn (synthetic variants). To understand this, we manually analyzed its errors
before and after fine-tuning on VTabFact, categorizing them into eight types: partial data extraction,
hallucination, incoherence, misunderstanding, reasoning errors, evaluation mistakes, dataset ambi-
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guity, and annotation flaws. Results (Figure 13) show that while the total number of errors slightly
increased post-finetuning, most now fall into the incoherence class, with all other error types sig-
nificantly reduced. This suggests a sharpening of reasoning patterns but also highlights a need for
future work targeting specific error types through synthetic supervision. Further details are provided
in Section I.

Beyond transferability and diversity, a key advantage of Visual-TableQA lies in its modularity and
scalability as explained in Section 4.3 .

Table 6: Performance of fine-tuned models on Table-VQA test set and the four splits of the
TableVQA-Bench dataset: FinTabNetQA (finance-related tables), VTabFact (table-based fact ver-
ification with Yes/No questions), VWTQ (information retrieval from Wikipedia tables), and VWTQ-
Syn (synthetic visual variants of VWTQ). Best performances per model variants are shown in bold.
Values in blue are from our own evaluation, while remaining values are reported from Fu et al.
(2025).

Model
TableVQA-Bench

Table-VQA
FinTabNetQA VTabFact VWTQ VWTQ-Syn

GPT-4o 98.0 80.1 72.8– 82.4– –
LLaVA-Next-34B – 71.2 36.4 38.0 –

LLaVA-Next-Llama3-8B 52.4 37.2 21.5 24.8 24.84
+ Visual-TableQA 56.8– 52.0– 33.2– 33.6– 28.89–

Qwen2.5-VL-7B-Instruct 96.4 81.0 68.53 73.2 79.03
+ Visual-TableQA 97.2 70.6 62.5 69.6 75.23–

4.3 SCALABILITY OF THE PIPELINE AND ITS BENEFITS FOR KNOWLEDGE DISTILLATION

This modular pipeline supports scalable generation with a clean separation of concerns—table struc-
ture synthesis, QA creation, and validation—making each component independently reusable and
upgradable. By automating the entire process from table generation to jury-based quality control,
Visual-TableQA provides a cost-efficient and high-quality benchmark for advancing multimodal rea-
soning over complex visual inputs. A central component of our pipeline is the mechanism of cross-
model inspiration 2.2, a collaborative prompting strategy. In this process, stronger models generate
layout “seeds” that guide weaker models in synthesizing structurally diverse tables, fostering novel
visual configurations through iterative transfer. The same principle extends to question–answer gen-
eration: models are prompted with both layout and topical cues—often proposed by stronger mod-
els—to create new QA pairs. This enables weaker models to contribute meaningfully to the dataset
by expanding the range of questions and reasoning patterns. Through this dual-inspiration process,
the pipeline cultivates a collaborative multi-model co-creation space, where models of varying capa-
bilities distill collective knowledge not through imitation, but through generative inspiration, while
maintaining data quality. In this regard, Visual-TableQA distinguishes itself from other synthetic
datasets Aboutalebi et al. (2024); Wang et al. (2024a); Li et al. (2025); He et al..

5 CONCLUSION

In this work, we introduced Visual-TableQA, a large-scale, open-domain, multimodal dataset de-
signed to rigorously evaluate visual reasoning capabilities over complex table images. Building on
the principles of Code-as-Intermediary Translation (CIT), we developed a fully automated, modu-
lar pipeline for generating LaTeX-rendered tables, reasoning-intensive question–answer pairs, and
high-quality rationales—all verified by a jury of strong LLMs. Despite being cost-efficient (gen-
erated for under $100), Visual-TableQA offers unprecedented diversity in table structures, visual
features, and reasoning depth. We showed that Visual-TableQA not only challenges existing vi-
sual language models (VLMs) but also serves as an effective training signal for improving reason-
ing performance. Fine-tuning on Visual-TableQA led to substantial gains across multiple bench-
marks—both table-centric and general-purpose—including ReachQA and MATH-Vision, demon-
strating the dataset’s capacity to bridge the performance gap between open-source and proprietary
models.
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APPENDIX

A EXTENDED RELATED WORKS

The vast majority of table-based QA datasets—such as HybridQA Chen et al. (2020b), WikiTable-
Questions Pasupat & Liang (2015), WikiSQL Zhong et al. (2017), and AIT-QA Katsis et al.
(2022)—represent tables in textual format rather than as rendered images, thereby bypassing the
challenges associated with visual layout interpretation. In contrast, our work focuses exclusively on
multimodal datasets—those that contain both textual and visual (image-based) information. These
can generally be grouped into two main categories: real-world datasets, collected from authentic
documents, and synthetic datasets, generated using automated tools. Real-world multimodal QA
datasets that emphasize tables—such as TAT-DQA Zhu et al. (2022), and TableVQA-Bench Kim
et al. (2024)—tend to be highly domain-specific, limiting diversity in both table layouts and ques-
tion types. For example, TAT-DQA Zhu et al. (2022) combines tabular and textual data from fi-
nancial reports and, while it introduces hybrid contexts for realistic reasoning, its questions rely
heavily on reading textual input rather than interpreting visual structure. Similarly, TableVQA-
Bench Kim et al. (2024) consists of 83% real-world tables (1,250 out of 1,500), primarily sourced
from task-specific datasets such as WikiTableQuestions (information retrieval), TabFact Chen et al.
(2020a) (fact verification), and FinTabNet Zheng et al. (2021) (financial data extraction). Due to
its relatively small size and the specialized nature of its subsets, the dataset exhibits limited visual
diversity. This limitation also extends to the remaining 16% synthetic tables, whose visual variation
is restricted to basic formatting attributes such as background color, border size, font size, and style.
More recently, ChartQA Masry et al. and DocVQA Mathew et al. (2020) have introduced large
open-domain datasets for visual question answering. ChartQA focuses on reasoning over charts and
plots; however, its tasks primarily involve shallow reasoning and do not reflect the structural com-
plexity and layout diversity found in real-world tables. In contrast, DocVQA offers greater diversity
in document layouts and structures, but lacks significant visual challenge—recent VLMs, including
relatively lightweight models like Qwen2.5-VL-7B-Instruct Team (2025), achieve over 94%
accuracy on this benchmark.

Among synthetic datasets, MultiModalQA Talmor et al. (2021) stands out as the only open-domain
resource focused on tables. It combines real-world figures, diagrams, and text passages sourced from
Wikipedia, with QA pairs crafted to assess both reasoning and visual comprehension. Although it
incorporates real content, the dataset is considered synthetic due to the way it links independent
modalities and generates QA pairs through formalized templates. However, this approach results
in limited diversity, as the questions are derived from a finite set of templates. In contrast, Table-
VQA Tom Agonnoude (2024) is a fully synthetic dataset generated using state-of-the-art LLMs.
Nonetheless, it lacks visual diversity and complexity—its tables follow similar formats and are pre-
dominantly centered around technical domains such as statistics, physics, and algorithms, all of
which are heavily numerical in nature.

Most of real-world datasets rely heavily on manual labeling, data collection, and preprocess-
ing—factors that significantly constrain their scalability. Recently, ReachQA He et al. introduced a
more scalable and innovative approach through its Code-as-Intermediary Translation (CIT) pipeline.
This method generates synthetic charts and reasoning questions by leveraging textual intermediaries
such as Python code, demonstrating that advanced reasoning capabilities of large language models
(LLMs) can be effectively transferred to visual models. While ReachQA successfully addresses
both scalability and reasoning complexity, its approach is tailored to chart-based visualizations and
does not extend to structured tabular data.

To summarize, existing table-based benchmarks consistently fall short in one or more key areas:
visual diversity, reasoning depth, or scalability. Notably, aside from MultiModalQA, there is no
open-domain dataset designed to evaluate model performance on rendered table images, despite their
prevalence in real-world settings such as reports, academic papers, and spreadsheets. In this work,
we introduce Visual-TableQA, a multimodal open-domain synthetic dataset specifically created to
assess reasoning capabilities over table images using LLMs

14
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B CONSIDERATIONS AND LIMITATIONS

The main limitations of this work relate to the use of Code-as-Intermediary Translation (CIT) He
et al. and the assessment of data quality. While we adopted LaTeX as an intermediate representation
for tables, its expressiveness is limited when handling more complex or visually rich images. Devel-
oping a robust, bidirectional image-to-text encoding system remains an open and promising area for
future research. In terms of data quality evaluation, although automatic metrics such as ROSCOE
provide useful insights, they are not yet as reliable as human judgment. As a result, human annota-
tors continue to play a critical role in ensuring high-quality data, especially when scaling synthetic
datasets for reasoning tasks.

In addition, we also observed that certain models, such as Qwen2.5-VL-7B-Instruct, did not
consistently benefit from Visual-TableQA supervision across all downstream tasks, highlighting a
potential limitation in generalization that warrants further investigation.

C TABLEQA LAYOUT AND TOPIC DIVERSITY

As described in Section 2.2, we sampled 5,000 distinct topics using GPT-4o to serve as inspirations
for table generation. To better illustrate topic diversity, we grouped these topics into 20 semantic
clusters using the K-Means algorithm. Figure 5 displays a 2D projection of these clusters, where
each color represents a distinct semantic group. For the 12 largest clusters, we highlight representa-
tive topics to give a sense of their thematic content.

In addition, Figure 4 shows the cumulative percentage of topics covered as clusters are added in de-
scending order of size. The smooth progression of the curve indicates that the clusters are relatively
uniform in size, confirming a balanced distribution of topic diversity throughout the dataset.

Figure 4: Cumulative topic coverage as clusters are added by descending size. The uniform slope
indicates an even distribution of topics across clusters.

To illustrate the diversity of table layouts produced by our pipeline, Figure 6 displays a side-by-
side comparison between the initial seed tables used in the first generation iteration and a sample
of layouts generated in subsequent steps. The wide range of structures highlights the pipeline’s
capacity to create rich and varied visual designs from limited starting templates.

D TABLE GENERATION SETTINGS

The first stage of the generation pipeline involves LLM-1, which is responsible for producing new
tables based on given inspirations. Specifically, it receives one LaTeX-formatted table as a layout
inspiration and three distinct topic inspirations. Based on these, it generates three new tables, each
aligned with one of the provided topics while drawing structural influence from the layout example.
The full prompt used to guide LLM-1 during this step is shown in Figure 7.

The second stage of the generation pipeline involves LLM-2, which is responsible for producing
question–answer (QA) pairs based on a single LaTeX table. The full prompt used to guide LLM-2
is shown in Figure 8.
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Figure 5: 2D projection of the 5,000 topics using UMAP and K-Means clustering. Each color
denotes a semantic cluster. Representative topics are listed for the 12 largest clusters to illustrate
diversity.

(a) Layout seeds used for the initial table gener-
ation. (b) Sample of diverse layouts generated by our pipeline.

Figure 6: Visual diversity of table layouts. Left: seed layouts used during the first iteration of table
generation. Right: layouts generated through cross-model inspiration and iterative refinement.

To encourage creativity while maintaining factual accuracy, the temperature parameter for each
model during this phase is set to 0.7.

In Table 7, we present the average validity rates of the generated QA pairs for each model involved
in the QA generation phase.
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You are an expert in generating synthetic datasets composed of LaTeX-formatted tables,
optionally accompanied by illustrative diagrams. Your task is to produce structured
content suitable for data-centric documents, ensuring each table (and diagram, if
included) is clear, well-organized, and visually informative.

Your final output should start with ```json and end with ``` as plain text, not just formatting
. Like this:

```json
{
"table_1": "BEGIN_LATEX

<LaTeX code for table 1 (with/without diagram) here>
END_LATEX",
"table_2": "BEGIN_LATEX

<LaTeX code for table 2 (with/without diagram) here>
END_LATEX",
"table_3": "BEGIN_LATEX

<LaTeX code for table 3 (with/without diagram) here>
END_LATEX"
}
```

Requirements:
The tables and diagrams will be used to generate reasoning questions. Therefore:

- If topic inspirations are supplied, ensure every generated table aligns with those
topics.

- Each LaTeX output must primarily consist of a table. Include a diagram only if it
meaningfully complements the table; avoid adding one unnecessarily. Do not generate
diagrams alone. If a diagram is empty or non necessary DON'T INCLUDE it.

- Keep any diagram minimal---smaller than the table, chart-free, and purely illustrative
---serving only to reinforce the table’s content without adding new information.

- Each table and their diagram must contain realistic, domain-relevant content. They
must be self-contained, include a clear descriptive title and not rely on external
data to compile.

- The type of information presented should be diverse---such as numerical data or
qualitative. The variety and richness of visual elements is essential to the
overall quality of the table and their diagram. Table quality should also come with
a large number of rows and columns.

- Table and diagram layouts should be creatively designed---taking inspiration from
reference example (when provided) but incorporating meaningful variations such as
colors, multi-row or multi-column cells, custom formatting adjustments, or any
other visual enhancement that promotes structural diversity.

- Table layouts should be at least as complex as the example provided, don't try to
simplify (diagrams are not mandatory). Table complexity should also come with a
large number of rows and columns.

- Do NOT escape any characters in the LaTeX code. The LaTeX must be written as plain
text, exactly as it would appear in a .tex file, with real line breaks and single
backslashes (\), not JSON-escaped.

- All LaTeX tables and diagrams must be constrained to fit entirely within the printable
area of a standard A4 page when compiled to PDF, without overflowing horizontally
or vertically. Use appropriate formatting techniques such as adjusting column
widths, reducing font size, or enabling landscape mode if necessary but NEVER
rotation.

- Make sure each LaTeX table and diagram includes all required \usepackage declarations
and is enclosed within a complete, compilable LaTeX document structure, including
the appropriate preamble and \begin{document}...\end{document} block.

- Make sure each LaTeX codes start and end with BEGIN_LATEX and END_LATEX, respectively.
- Make sure to wrapp your final answer with ```json at the beginning and ``` at the end.

Figure 7: LLM prompt used for table generation.

E COMMON ANOMALIES IN GENERATED TABLES

As summarized in Table 3, several tables generated by different LLMs required post-processing
adjustments to ensure visual clarity, LaTeX correctness, and topic alignment. Below, we categorize
the most common types of anomalies observed during generation:

LAYOUT AND FORMATTING ISSUES

• Table overflow: Tables exceeding page margins due to improper column widths or missing
column dimensioning.
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You are an expert in generating question--answer pairs from LaTeX-formatted. Your task is to
create a structured dataset consisting of visually challenging, reasoning-based questions
and their corresponding answers derived from a given LaTeX formatted table with optional
diagram.

Input:

You will be provided with a sample LaTeX table as context. Based on this table or diagram,
your goal is to generate a JSON object with the following structure:

questions: A python list of 3 challenging questions that require reasoning and analysis
based ONLY on the data presented in the table and the optional diagram. The questions
must be answerable using ONLY the information in the table or diagram(no extra
knowledge).

answers: A python list of 3 detailed answers to the 3 questions, including a clear chain of
thought explaining the reasoning process.

Requirements:

All questions must be relevant to the table's context and designed to test deeper
understanding or inference.

When possible, all questions should make full use of the visual or structural elements of
the table or diagram (such as rows, columns, headers, colors, patterns, diagrams etc.)
while maintaining clear relevance to the table’s content.

Questions must be clear and answarable with an objective methodology, no subjective
question.

All entries (both questions and answers) should be returned as lists of string values.
The global result should be a single JSON object wrapped in a markdown code block using ```

json at the beginning and ``` at the end, and containing all two key-value pairs.
This means your output should start with ```json and end with ``` as plain text, not just

formatting.

Figure 8: LLM prompt used for QA generation.

Table 7: Average QA pair validity across different QA generation models. Accuracies are computed
from a sample of at least 500 QA pairs per model.

Model Acc. (%)

Llama 4 Maverick 17B-128E Instruct 88
Gemini 2.0 Flash 89.1
Gemini 2.5 Flash 93.1
Gemini 2.5 Pro 89.3
GPT-4.1 90.4
Qwen3-30B-A3B 76.6
Qwen3-QwQ-32B 92.6
DeepSeek-R1-Distill-Qwen-32B 73.4
DeepSeek-R1T-Chimera 89.4
Claude Sonnet 4 91
Claude 3.5 Haiku 90.2
Grok 3 Beta 89.4
Reka Flash 3 79

• Text overflow: Cell content spilling outside the cell boundary, especially in narrow
columns or with long strings.

• Invisible content: Multirow cells with background colors that obscure cell text (e.g., white
text on white background).

• Improper horizontal lines: \midrule or \hline splitting across multirow cells, break-
ing visual coherence.

CONTENT RELEVANCE AND CORRECTNESS

• Empty or irrelevant tables: Tables with placeholder content or unrelated to the assigned
topic.

• Incorrect topic alignment: Generated tables that do not match the intended topic inspira-
tion.

• Duplicate outputs: All three tables generated for a prompt are identical or nearly identical
in structure/content.
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• Missing external resources: References to images or figures not included or available in
the output.

• Incorrect LaTeX syntax: Math symbols placed outside of math environments, leading to
compilation errors.

DIAGRAM-SPECIFIC ISSUES

• Missing tables: Some generations return only a diagram without an accompanying table.

• Node placement errors: Overlapping or misaligned nodes in TikZ diagrams.

• Arrow misplacement: Arrows that do not connect to correct nodes or that overlap diagram
elements improperly.

• Legend/title confusion: Titles or legends positioned incorrectly or detached from the rel-
evant diagram elements.

• Visual inconsistencies: General drawing flaws, such as missing anchors, inconsistent line
styles, or unintended overlaps.

These issues highlight the need for a validation loop in the TableQA pipeline and justify the inclusion
of human verification stages to ensure dataset quality.

F ROSCOE METRIC SCORES

In addition to the LLM jury validation of the Visual-TableQA dataset, we conducted a complemen-
tary quality assessment using the ROSCOE framework Golovneva et al.. This evaluation measures
step-by-step reasoning coherence across multiple dimensions, including semantic alignment, logical
consistency, and contextual grounding. The resulting scores, reported in Table 8, further support the
reliability and high quality of the generated tables and QA pairs, reinforcing the effectiveness of our
data generation pipeline.

Table 8: ROSCOE Golovneva et al. reasoning metrics averaged over the whole dataset. The “Di-
rection” column indicates whether higher or lower values correspond to better performance for each
metric.

Metric Direction Mean Std

Semantic Adequacy (↑)

Faithfulness-Step ↑ 0.99 5e-4
Informativeness-Step ↑ 0.99 5e-3
Informativeness-Chain ↑ 0.98 1.4e-2
Faithfulness-Token ↑ 0.99 2e-3

Avg 0.99

Redundancy & Risk (↓)

Repetition-Token ↓ 0.06 0.12
Repetition-Step ↓ 0.06 0.12

Avg 0.06

Logical Inference (↑)

Discourse-Representation ↑ 0.68 0.41
Coherence-Step ↑ 0.7 0.40

Avg 0.69

Fluency & Perplexity (↓)

Perplexity-Step ↓ 0.01 0.01
Perplexity-Chain ↓ 0.05 0.03
Perplexity-Step-Max ↓ 8e-3 8e-3

Avg 0.02

Grammaticality (↑)

Grammar-Step ↑ 0.96 0.05
Grammar-Step-Max ↑ 0.9 0.13

Avg 0.93
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G LLM JURY RELIABILITY

Following recent studies He et al.; Fu et al. (2025); Verga et al. (2024), we adopt a high-performing
LLM jury combined with a majority-vote strategy to evaluate model predictions. This multi-model
jury setup enhances evaluation robustness and mitigates individual model biases. The configuration
details for all jury models are provided in Section G.1. As argued in Verga et al. (2024), aggregating
judgments from several strong LLMs yields more consistent and reliable evaluations than relying
on a single model. In Section G.2, we discuss the challenges of LLM-based evaluations and we
report a detailed comparison between our LLM jury and human annotators on Qwen2.5-VL-7B
predictions across multiple benchmarks. In Section G.3, we provide a detailed analysis of jury-to-
jury agreement across both table and QA pair quality assessments, as well as benchmark evaluations.
The results reveal strong inter-annotator alignment, validating the consistency and effectiveness of
our jury-based evaluation protocol.

G.1 LLM JURY SETTINGS

LLM juries were involved at two key stages of the pipeline: (i) quality assurance, where generated
tables and QA pairs were validated before inclusion in the dataset, and (ii) evaluation benchmark-
ing, where model responses were assessed for accuracy and reasoning quality.

The prompt used for quality assurance is shown in Figure 9, while the prompt used for evaluation
during benchmarking is shown in Figure 10. Each jury consisted of multiple high-performing vision-
language or reasoning-capable LLMs, and final decisions were made via majority voting.

To ensure consistency and reproducibility across evaluations, all LLM jury calls were executed with
a temperature setting between 0.0 and 0.1.

We observed a notable drop in judgment accuracy when LLM juries were instructed to return only
a structured JSON verdict without any preceding explanation. In particular, Mistral-large
systematically omitted its reasoning whenever the keyword JSON was included in the prompt. This
issue was effectively mitigated by explicitly instructing models to provide a rationale prior to their
final decision and by avoiding any direct mention of JSON in the prompt, except for GPT-4.1
which remained robust under such formatting. Including explicit reasoning significantly improved
the reliability and depth of model evaluations, likely by reducing shallow assessments and prompting
more thoughtful judgments.

You are a reasoning question answer expert. You will be given a LaTeX formated table with/
without diagram, a list of 3 topics, and a pair of a question and its answer.

Your task is to evaluate the pair of question answer based solely on the data in the LaTeX
code and these criteria:

1) Does the LaTeX code contain a Table (not some charts alone or diagrams alone) ?
2) Does the table, any optional diagrams, and the rest of the document are on one single

topic from the provided list of topics, and internally consistent (be careful to off-
topic diagrams)?

3) Is the question clear and related to the table or the diagram?
4) Is the answer (including its reasoning) totally valid and does it actually respond to

the question?
5) Is the answer FULLY supported by and ONLY BY the table or diagram data (no extra

knowledge)?

If the five criteria are true, mark the pair as correct.
If one of the criteria is not met, mark it as incorrect.

Think step by step and conclude with your decision and the index of the criterium not met (if
none, index is 0) as follows:

JSON_mention
{{"decision": [0, index_of_the_criterium_not_met]}} for incorrect or {{"decision": [1, 0]}}

for correct.

Figure 9: LLM prompt used for QA evaluation.
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You are an expert evaluator of question-answer pairs. You will be given a question a model's
answer and a ground truth answer (reference).

Evaluate the answer based on these criteria:
1) Is the model's answer logically consistent?
2) Does the model's answer convey the same meaning as the ground truth?
If the two criteria are true, mark the pair as correct. If one of the criteria is not met,

mark it as incorrect.

Think step by step and conclude with your verdict and the index of the criterium not met (if
none, index is 0) as follows:

{{"verdict": [0, index_of_the_criterium_not_met]}} for incorrect or {{"verdict": [1, 0]}} for
correct.

Question: {question}
Answer: {answer}
Ground Truth: {ground_truth}
Response:

Figure 10: LLM prompt used for Benchmark evaluation.

G.2 LLM JURY LIMITATIONS AND MITIGATION STRATEGIES

Our evaluation protocol measures alignment between a model’s prediction and the reference answer,
leveraging LLM juries for semantic comparison. This strategy is highly cost-effective, enabling scal-
able automatic assessments on reasoning tasks. However, it comes with important limitations. A
model’s response may rely on external world knowledge rather than explicitly extracting informa-
tion from the table image. In such cases, LLM juries lack the ability to verify whether the response
is grounded in the table itself, as they do not have access to the visual context. This weakness
makes the evaluation pipeline vulnerable to false positives, especially when the model outputs a
factually correct answer that is not actually derivable from the table content. This could be miti-
gated by including rendered table images alongside the question and model prediction at evaluation
time—giving LLM juries full visual grounding. Unfortunately, While effective, this approach is
significantly more costly in terms of API calls and inference latency, making it challenging to scale
on large datasets. These observations underscore the need for hybrid evaluation strategies com-
bining automatic LLM-based judgments with human verification, in order to quantify the risk of
jury-related errors at scale.

To rigorously assess this risk, we conducted a manual evaluation of
Qwen2.5-VL-7B-Instruct’s predictions on both Visual-TableQA and the VTabFact
split of TableVQA-Bench, one of the benchmarks where the model exhibited degraded performance
after fine-tuning. Our manual analysis serves as a ground truth reference to assess the reliability and
limitations of LLM-based jury evaluation. Our evaluation considers not only the final answer, but
also the validity of the reasoning process: even predictions with the correct answer are marked as
incorrect if the chain of thought is flawed. We used the manual analysis to validate the judgments
made by the LLM juries. We identified two types LLM Juries errors:

• False Positive: The LLM jury mistakenly accepts an incorrect model prediction as correct.
• False Negative: The LLM jury mistakenly rejects a correct model prediction as incorrect.

The errors distribution are detailed in Table 9. The results reveal that the LLM jury aligns with
human judgment within a reasonable margin of 4.7%, even under our strict annotation protocol that
penalizes incorrect reasoning regardless of the final answer. A more relaxed evaluation criterion
would yield an even smaller discrepancy. These findings reinforce the reliability of our LLM jury
setup, demonstrating its effectiveness as a scalable proxy for human evaluation.

Table 9: Misclassifications by LLM juries on Visual-TableQA and VTabFact. Percentages are cal-
culated relative to the total number of evaluated examples in each dataset.

Error Type Visual-TableQA VtabFact

False Positive 3.45% 1.6%
False Negative 1.2% 0.0%
Total 4.65% 1.6%
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G.3 LLM JURY AGREEMENT ANALYSIS

Figure 11a presents a detailed breakdown of agreement levels between individual LLM juries, as
well as their alignment with majority-vote annotations. This analysis was conducted across both
table and QA pair quality assessments. The analysis reveals a spectrum of consistency across juries,
with GPT-4.1 emerging as the most reliable, likely due to its robust handling of edge cases. Among
all models, proprietary LLMs such as Gemini-2.5-pro and GPT-4.1 show the strongest align-
ment with the majority vote, while Deepseek-v3.1 exhibits the weakest agreement. Notably,
pairwise jury agreement patterns appear correlated with the models’ reasoning capabilities. Despite
variability in alignment strength, all juries demonstrate a meaningful degree of concordance with
the majority, underscoring the robustness of our collective evaluation protocol.

Conversely, Figure 11b shows consistently strong jury agreement across all models for benchmark
evaluations, with no notable divergence between proprietary and open-source LLMs. This can be at-
tributed to the relatively simpler nature of the task (semantic comparison between model predictions
and ground truth) compared to the more complex reasoning required for evaluating table-question-
answer triples, as analyzed in Figure 11a.

G.4 EVALUATOR CONSISTENCY COMPARED TO THE LITERATURE

In line with recent studies He et al.; Fu et al. (2025); Verga et al. (2024); Agarwal & Ciucă (2025), we
employed a high-performing LLM jury with a majority-vote strategy to evaluate model predictions.
The jury consisted of Mistral-large, Deepseek-v3.1, Gemini-2.5-pro, GPT-4.1,
and Deepcogito-v2. In Table 4, baseline values (in black) are reported from He et al., who used
GPT-4o as the sole evaluator. While our evaluation pipeline involves a broader and more powerful
set of models, making it arguably more reliable and robust (Verga et al., 2024), we still consider the
two evaluation protocols broadly comparable. In fact, due to the stricter majority-vote requirement
across diverse models, our approach may even yield more demanding or rigorous evaluations. This
comparability also holds for Table 6, where baseline performances (in black) are taken from Fu
et al. (2025), who employed GPT-4 for their evaluation. We argue that despite methodological
differences, all evaluations are consistent enough to be analyzed jointly for comparative purposes.

H MODEL FINETUNING HYPERPARAMETERS

The hyperparameters used for LoRA are reported in Table 10. For Qwen2.5-VL-7B-Instruct,
we employed a two-phase fine-tuning strategy. In the first phase (Tier A), we adapted the text-side
modules together with the multi-modal projector, while keeping the vision tower frozen. In the
second phase (Tier B), we further enabled LoRA on the attention projections of the last four vision
blocks, leaving the remaining vision layers untouched.

Table 10: Hyperparameters Used for Fine-Tuning with LoRA. More details in our GitHub repos-
itory. Abbreviations: lr=learning rate, r= LoRA rank, α= LoRA α, Targets=targets modules for
LoRA.

Model lr r α Targets

LLaVA-Next-Llama3-8B
2e-5

16 8 all-linear
(llm frozen)MiniCPM-V2.5-Llama3

InternVL2-8B 16∗ 32∗

Qwen2.5-VL-7B-Instruct
1e-4 16 8 Tier A: projector modules∗∗

2e-5 8 32 Tier B: last 4 vision blocks’
attention

* The InternVL training source code sets the LoRA alpha as twice
the LoRA rank, as shown in their official implementation here. We
followed this convention for full reproducibility and assumed that
other baselines applied the same rule.
** We left the Vision Tower untouched as it significantly degraded
model performance.
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(a) Pairwise agreement (%) between LLM juries, plus alignment with majority vote for tables and QAs quality
assessment.
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(b) Pairwise agreement (%) between LLM juries, plus alignment with majority vote for benchmark evaluation.

Figure 11: LLM juries agreement during evaluation.

I ERROR TAXONOMY OF MODEL PREDICTIONS

To better understand the failure modes of Qwen2.5-VL-7B-Instruct, we conducted a fine-
grained manual analysis of its predictions, both before and after fine-tuning on Visual-TableQA and
the VTabFact split of TableVQA-Bench. This section is organized as follows: (i) we define the full
set of error types used in our annotation protocol (Section I.1); (ii) we present a comparative analysis
of errors observed on VTabFact (Section I.2).
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I.1 ERROR CATEGORIES

We classified the observed errors into eight categories (Figure 12):

• Partial Data Extraction: The model overlooks some relevant entries (e.g., stops counting
too early, Figure 12a).

• Hallucination: The model references information not present in the table (Figure 12b).
• Incoherence: The model extracts the correct data but then misinterprets it or contradicts

itself later (deductive error, Figure 12c).
• Misunderstanding: The model produces factual statements that do not actually answer

the question (Figure 12d).
• Faulty Methodology/Reasoning: The reasoning is too shallow, or the model fails to satisfy

all the constraints of the query (Figure 12e).
• Ambiguity (Gray Area): Both the ground truth and the model’s prediction can be reason-

ably justified (Figure 12f).
• Dataset Mistake: The original dataset contains annotation or label errors.

I.2 ERROR ANALYSIS ON VTABFACT

The results of our analysis are shown in Figure 13. The side-by-side comparison of Figure 13a and
Figure 13b reveals a significant shift in error distribution after fine-tuning: although the total number
of errors increases from 67 to 88 (out of 250 samples), most newly introduced errors concentrate
in the Incoherence and Hallucination categories, while all other error types show a marked decline.
In particular, Faulty Methodology/Reasoning errors are significantly reduced, indicating that the
fine-tuned model exhibits more consistent and structured reasoning patterns. This trend is further
supported by Figure 13c, which shows the distribution of errors corrected by the fine-tuned model:
improvements span across all error categories. In contrast, Figure 13d shows that newly introduced
errors after fine-tuning are largely concentrated in only a 2 categories. We attribute the sharp rise in
Incoherence errors to two key factors:

Degraded Arithmetic Capability: A recurrent issue post-finetuning involves numerical compari-
son errors or basic math computation errors, leading to faulty deductions despite otherwise correct
reasoning steps. Such errors were less frequent in the pretrained model.

Answer Template Behavior: The fine-tuned model tends to state its final answer before providing
its chain of thought, often declaring an incorrect answer followed by a valid justification that leads
to the correct conclusion. Despite the correctness of the rationale, we count such instances as errors.
In contrast, the pretrained model typically presents its reasoning first, then concludes—leading to
fewer coherence violations.

J VISUAL-TABLEQA SAMPLE

Table 11 gives some more detailed examples of our dataset samples.

K IMAGE-TO-LATEX DATASET

We have also constructed an additional dataset, Img2TeX, which will be publicly released upon
paper acceptance. It contains all the table images generated during the construction of Visual-
TableQA, along with their corresponding LaTeX source code. This dataset is intended to comple-
ment the work of Kale & Nadadur (2025), which focuses on evaluating models’ ability to generate
LaTeX from textual prompts. In contrast, Img2TeX targets the task of generating LaTeX docu-
ments from visual (image-based) inputs. This distinction opens up a new evaluation pathway for
vision-language models (VLMs), particularly those aiming to learn structured document generation
from visual cues. As such, Img2TeX serves as a valuable benchmark for assessing the visual-to-
structured-text generation capabilities of multimodal models.
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Q: there be 6 artist with claimed

sale of 150 million?

A: To determine if there are 6 artists with
claimed sales of 150 million, let’s count
the entries in the ”claimed sales” column
where the value is 150 million:
1. Eagles [...] 6. Aerosmith
There are indeed 6 artists listed with
claimed sales of 150 million.

(a) Partial Data Extraction

Q: datia ’s constituency number be

lower than gohad ’s by 10

A: To determine if Datia’s constituency
number is lower than Gohad’s by 10,
we need to compare their respective con-
stituency numbers.
1. Identify the constituency number for
Datia: The table shows that Datia’s con-
stituency number is 20. [...]

(b) Hallucination

Q: the majority of the district be

new creation and do not have an
incumbent

A: To determine if the majority of dis-
tricts were newly created and did not
have an incumbent, let’s analyze the ”in-
cumbent” column:
1. **New York 1**: Incumbent: John
Smith [...] 6. **New York 12**: Incum-
bent: David Thomas [...] From this anal-
ysis: - There is only one district (New
York 1) that has an incumbent. [...]

(c) Incoherence

Q: of the 18 game play , 8 result in

1 or more team be shut out

A: To determine how many of the 18
games resulted in at least one team being
shut out, we need to analyze each game’s
score:
1. Birmingham vs Port Vale: 2-0 (Birm-
ingham shut out) 2. Bury vs Exeter City:
1-2 (Exeter City shut out) [...]

(d) Misunderstanding

Q: the smallest crowd the charger

play in front of be 44826, a road
game against the raider

A: To determine if the smallest crowd the
Chargers played in front of was 44,826
during a road game against the Raiders,
let’s follow these steps:
1. Identify the games where the Charg-
ers played against the Raiders: [...] 2.
Check the attendance for each game: [...]
3. Compare the attendance figures: [...]

(e) Faulty Methodology

Q: hd 178428 ’s arrival date be 10

year later than that of hd 190406

A: [...]
Since the difference is 10 years and 10
months, it is not exactly 10 years. There-
fore, HD 178428’s arrival date is not 10
years later than that of HD 190406.
Ground Truth: Yes

(f) Gray Area

Figure 12: Illustration of the Error Categories
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(a) Distribution of Errors for Qwen2.5-vl-7b. (b) Distribution of Errors for Qwen2.5-vl-7b
after Finetuning.

(c) Distribution of Errors corrected by Finetuning. (d) Distribution of Errors introduced after Fine-
tuning.

Figure 13: Comparison of error distributions between the pretrained Qwen2.5-VL-7Bmodel (left)
and its finetuned version (right). Percentages in the first row refer to the full VTabFact set. Percent-
ages in the second row correspond to: (c) samples where the finetuned model was correct but the
pretrained model was not, and (d) samples where the pretrained model was correct but the finetuned
model was not.
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Table 11: Sample of reasoning-intensive QA pairs. The first row’s question and answer are trun-
cated for readability. These questions address multiple visual aspects and extend beyond simple
information extraction to test interpretive reasoning, as illustrated in the second row with a “how”
question.

Table Question Answer

Following the lineage de-
picted in the diagram, from
Gram Stain to Albert Stain,
describe the progression of
the risk category at each step
as indicated by the cell col-
ors in the table.

The lineage in the diagram shows Gram Stain →
Neisser → Albert. We use the table to find the
risk category for each. 1. The ’Gram Stain’ is the
starting point. Its ’Risk Category’ cell has a light
green background, corresponding to a ’Low’ risk.
2. The next step is the ’Neisser Stain’. Its ’Risk
Category’ cell also has a light green background,
indicating the risk remains ’Low’. 3. The final step
is the ’Albert Stain’. Its ’Risk Category’ cell has a
light yellow background, corresponding to a ’Mod-
erate’ risk. Therefore, the risk category progression
is from Low (Gram) to Low (Neisser), and then in-
creases to Moderate (Albert).

Which transition type’s
technical diagram is repre-
sented by a gray circle with
a white center, and in which
era was it first used?

The ’Dissolve’ transition’s diagram is a gray circle
with a white center. It was first used in 1903, as
shown in the first row of the ’Dissolve’ category.
This is identified by matching the diagram descrip-
tion to the transition type and verifying the first us-
age year listed in the table.

If a photographer wants to
capture the natural color
tones of Leather without
introducing any discol-
oration, which lighting
setup(s) should be avoided
and which should be used?
Justify using the table’s de-
scriptions and color coding.

To preserve Leather’s natural colour without dis-
coloration, the photographer should **avoid**: -
**Reflected Light** (yellow mixed) because its
description is ’Shade discoloration’, indicating a
colour shift. - **Spotlight** (red problematic) be-
cause it causes ’Overly contrasted creases’, which
also alters the colour balance. The recommended
lighting is **Diffused Light**, which is green (op-
timal) and described as ’Natural grain preserva-
tion’, keeping the colour true. **Side Light**
(orange mixed) mentions ’Grain texture empha-
sis’ and does not note any colour issue, so it can
be used optionally if texture enhancement is de-
sired. Thus, use Diffused Light (and optionally
Side Light) while avoiding Reflected Light and
Spotlight.
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