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Abstract. Large Language Models (LLMs) have demonstrated substantial promise in the medical field,
where reasoning over vast and varied datasets is critical. However, effectively deploying these models in
healthcare requires addressing significant challenges, including the need for domain-specific data, fine-
tuning for clinical accuracy, and ensuring models are compact enough for broad accessibility. This arti-
cle surveys key advancements in reasoning methods, such as Chain-of-Thought, Chain-of-Hindsight, and
Self-Consistency, which enable LLMs to perform complex reasoning and improve interpretability through
step-by-step problem-solving. Notably, self-improving techniques also facilitate the generation of quality
training data, helping to mitigate the scarcity of labeled medical datasets and highlighting the value of large
model scales to enhance reasoning capacity. Efforts to condense these models into Small Language Mod-
els (SLMs), though promising, show that substantial reasoning abilities remain predominantly within the
domain of larger LLMs, underscoring their necessity for high-level medical applications. By examining
recent studies, we explore methods to organize and encode medical knowledge—such as the creation of the
MultiMedQA dataset—and advances in multilingual reasoning that address data scarcity across languages.
This work ultimately emphasizes that while LLMs hold potential for achieving clinician-level reasoning
in healthcare, model optimization and interpretability remain essential for ensuring safe, equitable, and
accessible Al deployment in clinical settings.
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1 Introduction

In recent years, Large Language Models (LLMs) have emerged as powerful tools in the field of medical rea-
soning, offering promising applications for enhancing diagnostic and decision-making processes. One of their
key strengths lies in reasoning over implicit knowledge Conneau et al., 2018; Talmor et al., 2020. This capabil-
ity enables LLMs to utilize vast amounts of information encoded within their parameters to generate insights
even when direct data is unavailable, thereby mimicking human-like reasoning processes in complex medical
scenarios.

Medical reasoning with LLMs can be approached through different reasoning frameworks. In this work we
will explore some of them such as abductive, inductive, and defeasible reasoning. Abductive reasoning Young
et al., 2022, often utilized in diagnostic settings, allows LLMs to generate hypotheses based on incomplete or
ambiguous data. Inductive reasoning Yang et al., 2024 enables models to generalize from specific instances,
supporting prognosis and treatment recommendations. In contrast, defeasible reasoning involves reassessing the
certainty of a hypothesis based on new information, making it useful for adjusting diagnoses as new medical
results or events emerge.

To improve their performance, LLMs also leverage self-improvement techniques. Chain of Thought (CoT)Wei
et al., 2022 methods guide LLMs to systematically outline their reasoning steps, enhancing transparency and
interpretability. Chain of Hindsight (CoH) approaches further refine reasoning by allowing models to revisit and
refine their previous steps, simulating a reflective process Liu, Sferrazza, and Abbeel, 2023. Self-Consistency
Wang et al., 2022 adds robustness to the models’ predictions by aggregating multiple reasoning paths, leading
to more accurate and reliable outputs. Few-shot learning Kojima er al., 2022 techniques are particularly valu-
able in medical contexts, enabling models to learn new tasks or adapt to novel scenarios with minimal labeled
data, which is often scarce in specialized fields.

This document will further explore the potential of small language models in medical reasoning. While
large models have traditionally dominated the field, smaller, specialized models are gaining attention for their
efficiency and adaptability. By focusing on task-specific knowledge and requiring fewer computational re-
sources, small language models present a compelling option for scalable, targeted applications in healthcare,
especially in settings with limited access to high-powered computational infrastructure. However, a large num-
ber of parameters appears essential for enhancing reasoning capabilities Wei et al., 2022; Zhang et al., 2024.
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2 Implicit Knowledge Extraction from LLMs

LLMs are known to encode and recall large amounts of information from their training data, despite not being
explicitly trained to memorize. This capability raises questions about the relationship between language mod-
eling and knowledge retention. As a result, numerous studies have focused on understanding how LLMs store
and process implicit knowledge, yielding applications in areas such as cross-lingual sentence representations
Conneau et al., 2018 and systematic reasoning over implicit knowledge Talmor et al., 2020.

2.1 Cross-Lingual Sentence Representation

Cross-lingual sentence representation aims to transfer understanding across languages, enabling models to
process multilingual data efficiently, especially in low-resource languages where annotated data is scarce. In
Conneau et al., 2018, two primary approaches are explored: embeddings alignment and multilingual embed-
dings.

Embeddings Alignment Approach: This method involves aligning the embedding spaces of two language-
specific models, M; and M;, by learning a mapping matrix W using a sample D of shared words. The goal is
to minimize the distance between corresponding embeddings across the two languages, formulated as:

W = argminyco,(x) ), |WHMix— Mox]|
xeD
This matrix enables translation of word embeddings from one language into the other, yielding promising
results for low-resource languages.

Multilingual embeddings approaches: Here, M, (for a secondary language) is fine-tuned to produce
embeddings similar to those generated by M (for English). This results in a unified embedding space, allowing
a single classifier to handle downstream tasks in multiple languages. The authors trained a Bi-LSTM network
classifier and observed state-of-the-art performance at the time.

XNLI-dataset: To extend Natural Language Inference (NLI) to Cross-Lingual Language Inference (XNLI),
the authors created a dataset covering 15 languages. They collected 7,500 English premise-hypothesis pairs
from diverse genres and translated them, creating a dataset of 112,500 pairs, labeled as “entails,” “contradicts,”
or “neither.”

2.2 Reasoning over Implicit Knowledge

In Talmor et al., 2020, the authors show that LL.Ms can utilize memorized knowledge to answer questions posed
in natural language. By training RoOBERTa Devlin ef al., 2018 on QA datasets like 20Q and RULETAKER,
which include commonsense knowledge, they demonstrated the model’s ability to answer implicit knowledge-
based questions, as illustrated in this example:

Input: Chen would like to buy an animal smaller than a horse, but Chen does not want a fish. Chen would
like to buy a Dog? Implicit memorized knowledge: The model learned that dogs were smaller than horses
Output: True

After evaluation, the accuracy reached 99% proving their claim. the authors developed a method for auto-
mated dataset generation for training models in implicit reasoning. This process involves:

Sampling a relevant hypernym rule (e.g., “a whale is a mammal”) from large datasets like CONCEPTNET
Speer, Chin, and Havasi, 2017, or WORDNET Miller, 1995 etc.

Finding a relevant property of the hypernym object, e.g., (mammal has a belly button, true)

Applying the hypernym inference type: (if A is a B and B has property C, then A has property C) to deduce
the logical conclusion. This conclusion will become the hypothesis, e.g. (whale has a belly button), true)
Finally adding distractors—irrelevant information to challenge reasoning further.

This structured approach enables the efficient expansion of implicit reasoning training datasets, advancing LLM
capabilities in nuanced knowledge-based reasoning.

3 Different forms of Reasoning for LL.Ms

Reasoning can take various forms, and based on the type of reasoning we consider, there is an adapted train-
ing setup and specific dataset. This section explores three forms of reasoning: abduction Young et al., 2022,
defeasible reasoning Rudinger et al., 2020, and inductive reasoning Yang et al., 2024.
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3.1 Abduction Reasoning

When an observed fact p cannot be deduced from a knowledge base, abductive reasoning identifies additional
facts that, if added, would allow p to follow from the existing knowledge. Table 1 illustrates the difference
between abduction, deduction, and induction.

TABLE 1. Illustration of Abduction reasoning
Deduction: Socrates is human — Humans are mortal — ?
Induction: Socrates is human — ? — Socrates is mortal
Abduction: ? — Humans are mortal — Socrates is mortal

As stated in Young et al., 2022, abduction helps us understand observations difficult to interpret. Training
Transformers to abduction can also lift one limitation of Transformers that memorize knowledge without cap-
turing any underlying reasoning. To train their model for abduction, the authors created the dataset Abduction
Rule according to 4 principles:

Each datapoint is written in natural language, instead of formal math language

Each datapoint is made of a few facts, a few rules, an observation and an explanation which derives from
facts, rules and observations

Each rule is limited to three conditions (e.g., “If something is cute, funny, and adorable, then...”)

Facts and rules are presented randomly to prevent reliance on consistent ordering

Abduction Rule is made of three animal-related datasets and three human-centered datasets, each at vary-
ing complexity levels. 6 different models were then trained on each of the datasets and evaluated on the other
datasets. The authors observed the following conclusions:

— No model gave a single correct answer in a domain different from the one of his training. It shows that
reasoning is not only a matter of syntax manipulation, the model also needs to be familiar with the topic

— In general, models performed better when trained on complex datasets and tested on simpler datasets

— Training models on multiple domains does improve performance.

3.2 Defeasible Reasoning

Defeasible reasoning, as presented in Rudinger et al., 2020, allows initial inferences to be revised based on
new information. For instance, given the context “The drinking glass fell,” one might infer that “The drinking
glass broke.” But if new information specifies, “The glass fell onto a pile of laundry,” the initial inference is
weakened.

The paper introduces a dataset for defeasible reasoning in three categories: natural language inference
(0-SNLI), common sense reasoning (8-Atomic), and reasoning about social norms (8-Social). Each category
contains premise-hypothesis pairs, with added contextual updates called “strengtheners” (making hypotheses
more plausible) and “weakeners” (making hypotheses less likely). Examples are shown in Table 2 extracted
from Rudinger et al., 2020.

TABLE 2. Some instances of the Defeasible reasoning dataset

Task Premise Hypothesis Type Update
d- Old man crafting Old man crafting strengthener The man is serious and is surrounded by workers
SNLI |something in his something in his
workshop workshop weakener  The man is wearing pajamas and is chuckling
o- PersonX has a pool ~ Because PersonX strengthener It was PersonX’s birthday
Atomic |party wanted to hangout
with friends weakener PersonX was having a family reunion
o- You should help your strengthener They have asked you to chip in
Social family with funeral
expenses weakener You are not financially stable

These datasets can be used to train an LLM in two different ways:
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— Classification: Predicting whether an update strengthens or weakens an hypothesis
— Generation: Producing an update that either strengthens or weakens a given hypothesis

The goal of these tasks is to train the model to think as a sceptic, which means considering the possible
weaknesses of a given claim or argument in order to come up with examples or counterarguments that may
undermine it. For evaluation, the authors trained 3 different models (TS5, Bart, GPT2) and compared their per-
formance. he classification performance matched human-level accuracy (best with GPT2), though performance
in generation was lower, as models often rephrased the hypothesis rather than introducing new information.

3.3 Inductive Reasoning

The goal of Inductive reasoning is to derives general rules or hypotheses from observed evidence. As for the
two previous papers, Yang et al., 2024 provided a method to generate a dataset specific to inductive reasoning
named DEERLET. In this dataset, each entry is a tuple of facts, rule and four labels:

Label 1 says whether a rule is not in conflict with its facts
Label 2 says whether a rule reflects reality

Label 3 says whether a rule is more general than its fact
Label 4 says whether a rule is trivial

Labels are learned separately by some different models, in order to make data generation automatic. The
topics covered in this dataset include physics, history, zoology, botany, astronomy and geology. Using this
dataset, we can train an LLM with the following pipeline: the model is provided with factual information as
input. Based on these facts, the model generates a rule that should logically explain them. The generated rule
is then assessed using the four labels. If the rule scores poorly on Label 1, the model generates a new rule and
re-evaluates it. Once the rule scores well on Label 1, it’s then checked against Label 2, and this cycle continues
until the rule meets all four labels. Figure 1 provides a thorough illustration

Fact(s) If a plant has

E.g., Three facts in Table 1 a trapping
Module 1 I Module 2 Module 3 Module 4 Module 5 mechanism,
Rul Deductive Indiscriminate Generalization Triviality tt';egl ; ill

ules i Rules i Rules Rules Rul probably wi

nsisten nfirmation ules

Rule Proposer —— CEv:ﬁ:t ofy Mhasid CoHan d;ro | Gheaar Detector v

insects an

Pu(fact|rule) Pus(rule) Pus(fact|rule) Pus(rule) other small

If a plant is carivorous, XIf aplant is carnivorous, x If Drosera is carnivorous, XIfa plant is carnivorous, creatures to

then it does not have a then it uses traps with then it uses traps to catch then it is carnivorous. obtain
trapping structure. sharpened bamboos. insects. nutrients.

Fig. 1. Generation process use for inductive reasoning Models

Without a prior benchmark, the authors achieved promising results with GPT-J, reporting performance
three times better than models trained solely on facts and rules.

4 Enhancing the Intrinsic Abilities of Models

In recent developments, researchers have explored not only optimizing LLM embedding spaces and guiding
models to reason in structured ways but also improving performance through strategic prompting techniques.
Using particular keywords and refined training strategies, these approaches can encourage models to produce
more precise and contextually aware responses. In this section, we examine several of these prompting-based
methods.

4.1 Chain Of Thoughts

The ”Chain of Thought” (CoT) prompting, introduced by Wei ez al., 2022 demonstrates that sufficiently large
LLMs can develop strong reasoning abilities through an approach called Chain of Thought prompting. In CoT
prompting, the model is guided to produce a sequence of intermediate reasoning steps before arriving at its
final answer. This approach has several benefits:

— Problem Breakdown: By breaking down a complex task into a series of smaller steps, the model can
allocate greater processing power to challenging parts of the problem.
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— Improved Interpretability: The explicit steps make it easier to understand and validate the reasoning path
that leads to the final answer.

Table 3 (drawn from Kojima ez al., 2022) provides examples of prompts and responses using zero-shot and
few-shot inputs, both with and without CoT.

TABLE 3. Example of zero shot and few shot inputs with and without Chain of Thoughts

Task |Prompt beginning Prompt question

Few- |Q: Roger has 5 tennis balls. He buys two more cans of A juggler can juggle 16 balls. Half of the balls are golf
shot |tennis ball. Each can has 3 tennis balls. How many ball balls and half of the golf balls are blue. How many blue

does he have now? golf balls are there?

A: The answer is 11. A:
Zero- A juggler can juggle 16 balls. Half of the balls are golf
shot balls and half of the golf balls are blue. How many blue

golf balls are there?
A: The answer is ...

Few- |Q: Roger has 5 tennis balls. He buys two more cans of A juggler can juggle 16 balls. Half of the balls are golf
shot- |tennis ball. Each can has 3 tennis balls. How many ball balls and half of the golf balls are blue. How many blue

CoT |does he have now? golf balls are there?
A: Roger started with 5 balls. 2 cans of 3 balls of tennis A:
each is 6 balls. 5+6=11. The answer is 11.

Zero- A juggler can juggle 16 balls. Half of the balls are golf
shot- balls and half of the golf balls are blue. How many blue
CoT golf balls are there?

A: Let’s think step by step

Wei et al., 2022 evaluated CoT prompting on diverse maths problem benchmarks: GSM8K, SVAMP,
ASDiv, AQuA, and MAWPS. For each of these problems, they compare the results of standard input, and CoT
prompting input. The authors considered various models with a wide range of complexity: GPT-3 (350M to
175B), LaMBDA (422M to 137B), PaLLM (8B to 540B). Key findings included:

— Parameter Dependency: CoT did not impact model performance significantly for models below 100B
parameters, but as model size increased, so did performance gains. The larger the model, the bigger the
performance improvements

— Improved Accuracy in Large Models: Large models, such as GPT-3 (175B) and PaLM (540B), achieved
up to 75% accuracy across datasets with CoT prompting.

— High Consistency: In cases where the final answer was correct, the CoT reasoning was accurate over 97%
of the time, with errors primarily due to issues like calculator inaccuracies or one-step omissions.

CoT prompting generally suits well few shot training, but Kojima ez al., 2022 showed that it could also be
exploited in zero shot learning Kojima et al., 2022. Zero-shot learning is a setup where a language model is
asked to complete a task without seeing any examples or demonstrations of how to do it first. This contrasts
with few-shot learning, where the model is shown a few examples of how the task works before answering
a similar question. To implement the Chain of Thought (CoT) technique in zero-shot learning, the authors
introduced a two-stage prompting process. In the first stage, called reasoning extraction, the model is given
a prompt that ends with the phrase ”Let’s think step by step.” This phrase prompts the model to generate a
sequence of reasoning steps, essentially mapping out the logic it will follow to arrive at an answer.

In the second stage, these reasoning steps are combined with the original prompt to form an augmented
prompt. This updated prompt is then submitted back to the model, now ending with the phrase “Therefore the
answer is,” which signals the model to use the gathered reasoning to generate the final answer. This two-stage
approach—gathering reasoning first, then forming a conclusion—helps the model to work through complex
questions even without examples to guide it. Table 4 provides a full illustration of this pipeline.

The authors conducted an evaluation similar to that in Wei ez al., 2022 to assess various language models
of different sizes on math problem benchmarks and commonsense datasets like CommonSenseQA and Strate-
gyQA. Their findings aligned with the earlier study’s results:

— Under a zero-shot learning setup, model size alone did not improve performance significantly. However,
larger models did show greater proficiency when using Chain of Thought (CoT) prompting.
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TABLE 4. Example of two stages prompting for zero shot with Chain of Thoughts

Prompt|Input Output

First |Q: Roger has 5 tennis balls. He buys two more cans of A: Roger started with 5 balls. 2 cans of 3 balls of tennis
prompt |tennis ball. Each can has 3 tennis balls. How many ball each is 6 balls. 5+6=11.

does he have now?

A: Let’s think step by step

Second |Q: Roger has 5 tennis balls. He buys two more cans of The answer is 11.
prompt |tennis ball. Each can has 3 tennis balls. How many ball

does he have now? A: Let’s think step by step. Roger

started with 5 balls. 2 cans of 3 balls of tennis each is 6

balls. 5+6=11.

A: Therefore the answer is

— CoT prompting achieved an average accuracy of about 60%, compared to only 30% for standard prompt-
ing. This improvement demonstrates that the two-stage CoT prompting process is effective, although its
performance still trails behind both few-shot learning and human-level accuracy.

— The accuracy increase was more substantial on math problems than on commonsense questions. This likely
occurs because solutions to math problems often involve recurring patterns, which CoT prompting can help
the model to recognize and apply.

4.2 Self-consistency

Building on CoT, Wang et al., 2022 proposed ”Self-Consistency,” which assumes that complex reasoning prob-
lems may have multiple valid paths to a solution. Using this approach, the model is prompted with CoT and
generates multiple answers by adjusting the temperature parameter 7 in the softmax layer. The parameter T is
responsible for the entropy of this distribution.
Let’s consider a vector z € R" a logit vector with n the vocabulary size. Then Softmax(z) € R” and:
&5l T

SOftmaX (Z)l = m

The higher the value of T, the higher the entropy of the tokens distributions. Therefore, increasing T, can
force the model to explore new answers, hence bringing more diversity in the batch of answers. This variation
promotes a diversity of answers, from which the most common one is selected as the final answer. This method
yielded a 12% average accuracy improvement on math and commonsense benchmarks.

Huang et al., 2022 pushed CoT prompting and self-consistency even further by using it to generate synthetic
data for few-shot training. The whole process is illustrated in 2 extracted from Huang ef al., 2022.

Input:
Q: John buys 20 cards and 1/4 are - Qoo .
Alexis 10-8 =2 L i
| I i
uncommon. How many uncommon years old. A ..E?.Tff_a_r?_p. les |

cards did he get? Q: ... How old is Alex?

A: John gets 20 * 1/4 = 5 uncommon Alex’s age is in the A
cards. The answer is 5. middle of 8 and 10.
- ) Langua i . —
| CoT examples ! ™ Mgdefe Alox Is\9)years oid. o . ‘Q: ... How old is Alex? ’

,,,,,,,,,,,,,,,,, (8+10)/2 =9, A: Let’s think step-by-step.
Q: Amy is 10. Jake is 8. Alex’s age is The answer is/9.
right in the middle. How old is Alex? X Majority Output:
A: omemeosooeoiiiiiooii X i .
! Training-set questions or | b Voting [ (8+10)/2=9 ... answer is 9. ]
| self-generated questions y answer
Multiple path [ Alex is 9 years old ... ]
decoding [ ]
Self-training Mixed formats of selected reasoning paths

Fig. 2. Chain of Thought prompting coupled with Self consistency

The authors experimented their method with PalLM (540B) on various math, commonsense and language
inference datasets benchmarks. This method gave new state of the art results on all the datasets.
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4.3 Finetuning LLMs with Human Feedbacks

Large language models (LLMs) are often trained on extensive datasets that may contain biases, errors, or in-
appropriate content, which could lead the models to replicate these issues in their responses. To address this,
LLMs typically go through a finetuning phase after initial training to better align their outputs with human val-
ues and preferences, which is especially crucial in sensitive fields like healthcare. Two key approaches for fine-
tuning are Supervised Fine-Tuning (SFT) and Reinforcement Learning with Human Feedback (RLHF)Rafailov
et al., 2024. In SFT, the model is trained further on high-quality, curated data. This approach involves cleaning
and organizing the dataset to ensure that the model learns from reliable sources, though this process can be
quite time-consuming. RLHF fine-tunes the model using human judgments about its output. First, the model
generates a pair of responses to a given prompt, (y1,y2). These responses are shown to human evaluators who
pick the preferred answer, resulting in a labeled preference (y,, > y;|x), where y,, is the preferred response and
y; is the less preferred one. These preferences reflect an underlying reward function, r*(y,x), which represents
the ideal responses according to human values. Rafailov e al., 2024 established that this reward function r*
could be learned by solving this parametric problem

LDPO (Tce ) Tcpretrained> = _E(x,yw yo)~D |:10g ° <B log

T (yw |¥) Bl T (Vw [X) )}

pretained (y, 1) mpretrained (y,, | x)

where P is a parameter controlling the deviation from the pretrained model policy mPe"2ined and D is a
dataset of comparisons (x, s, y;). Solving this problem can be data and computation intensive since building
a representative set of pairs and computing the esperance for the loss are very heavy tasks. To reduce the cost
and complexity, Liu, Sferrazza, and Abbeel, 2023 introduced an efficient alternative approach called Chain of
Hindsights (CoH).

— Instead of learning an entire reward function from scratch, CoH uses a few-shot setup, where each prompt
provides both a good and a bad example answer to the same question. This setup directly demonstrates
human preferences in a way that is simpler and less computationally demanding. By using an existing set
of labeled examples, this method can convey human preferences without complex reward function training.

— During the model’s generation of answers, CoH includes a masking technique to stop the model from
simply copying the preferred example given in the prompt. The masking function in the model’s language
generation layer restricts the model from directly using words or phrases from the good example, ensuring
that it forms its own answer while guided by the example. The mathematical expression for the resulting
distribution of words is:

logp(x) =log[J(1 =1, (x)) pxilxj, j=1---n—1)
i=1

where 1, (x;) indicates if the token x; is used in the good example y,,.

In evaluations, Liu, Sferrazza, and Abbeel, 2023 applied CoH to a summarization task and compared it
with two other versions of GPT-J: one fine-tuned using standard supervised fine-tuning (SFT) and one us-
ing RLHF. They measured performance across several criteria, including coverage, accuracy, coherence, and
overall quality. CoH significantly outperformed both SFT and RLHF, achieving an improvement of 37% in
quality.

5 Al Clinical Agents Deployment

Deploying large language models (LLMs) in healthcare is now possible, as shown by recent research, but
there are key challenges. Specifically, developing relevant medical datasets and creating smaller, more efficient
models are crucial for accessible, impactful deployment. A smaller model that can operate on personal de-
vices would help make healthcare information more widely available, helping address disparities. This section
reviews recent studies in these areas.

5.1 Encoding Medical Knowledge

In a significant effort to compile medical knowledge, Singhal ef al., 2023 created the MultiMedQA dataset,
which organizes multiple medical datasets into a single question-answer dataset tailored for medical applica-
tions. MultiMedQA combines six existing datasets—MedQA, MedMCQA, PubMedQA, LiveQA, Medi-
cationQA, MMLU—plus a seventh dataset, HealthSearchQA, which focuses on commonly searched health
questions. Here’s an overview of these datasets:
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— MedQA and MedMCQA are Composed of multiple-choice questions from professional medical board
exams, featuring detailed answer explanations.

— PubMedQA contains biomedical research questions with yes/no/maybe answers, sourced from PubMed
abstracts, and includes in-depth answer explanations.

— The MMLU includes multiple-choice questions spanning clinical, medical, and biology topics with de-
tailed answers.

— The HealthSearchQA consists of 3,173 commonly searched consumer questions. The dataset was curated
using seed medical conditions and their associated symptoms.

Using MultiMedQA, the authors fine-tuned PalLM with techniques explored in this survey:

— Instruction Tuning: They employed Flan-PalLM instead of standard PalLM, which improved accuracy on
MedQA by over 30%. Flan-PaLLM uses few-shot learning with instructional examples in prompts, though
the reasons for this accuracy boost are not fully analyzed.

— Secaling: Following previous findings, they observed that increasing model size enhances reasoning capa-
bilities.

— CoT prompting: This approach showed limited impact because medical questions often have numerous
valid reasoning paths that can lead to an answer. In such cases, choosing just one of these paths may not
result in the most accurate or complete answer.

— Self-consistency: this is the best solution to deal with the weakness of CoT prompting, yielding a notable
accuracy improvement.

Two versions of PaLM were trained: Flan-PaLM (with instruction tuning) and Med-PalLM (without instruc-
tion tuning). These models were assessed through a blind evaluation: clinicians rated answers from both models
without knowing their source, based on factors such as scientific and clinical consensus (a), the presence of in-
correct content (b), the omission of content (c), the extent of possible harm (d), the likelihood of harm (e), and
possible bias in answers (f). The results are presented in Fig 3 drawn from Singhal et al., 2023.

5.2 Small Language Models for Deployment

LLMs often require vast resources due to their large size, which tends to limit portability. However, Zhang
et al., 2024 explored the capabilities of smaller language models (SLMs) trained on large datasets to see if they
could exhibit similar reasoning abilities. Their work used tiny-Llama, a 1.1-billion-parameter, decoder-only
model, trained on a dataset of 950 billion tokens combining SlimPajama (open-source LLM training data) and
StarCoder (GitHub code data). Training spanned three phases, beginning with an initial epoch using SlimPa-
jama, followed by continual training with both SlimPajama and StarCoder, and ending with a cooldown
phase using smaller batch sizes, and learning rate. Their model achieved a 53.75% accuracy on commonsense
reasoning tasks—a 3% improvement over previous SLM benchmarks. In language understanding tasks using
few-shot learning, the model averaged 21% accuracy, a 4% improvement in the SLM category. However, these
results remain roughly 50% lower than current LLM benchmarks Wei et al., 2022.

6 Discussion and Conclusion

This work examines various ways of enhancing reasoning with Large Language Models (LLMs) for medical
applications. One key development is Cross-Lingual Sentence Representation Conneau et al., 2018, which rep-
resents an initial effort to build models capable of multilingual reasoning. This capability helps address a signif-
icant issue in healthcare machine learning: limited data availability in various languages. Another advancement
is reasoning over implicit knowledge Talmor ef al., 2020, which introduces new possibilities for classification
tasks in healthcare. For example, instead of fine-tuning a model specifically for token classification, it may be
possible to use the model’s already encoded clinical knowledge. This can be done by presenting a classification
question in natural language. An example is found in Lompo and T.-D. Le, 2024, where researchers aimed to
interpret numerical values using CamemBERT-bio by training it to classify specific tokens. For instance, in
the sentence “La FR est de 45%),” they aimed to classify “45%” to understand its clinical relevance. However,
following the approach of Talmor et al., 2020, another way could be to phrase a question like “Is 45% a res-
piratory rate?”” and have the model answer “yes” or “no.” This method of using natural language input might
enable the model to draw more effectively on its internal knowledge.

Various types of reasoning can significantly enhance how LLMs organize and interpret the vast amounts
of knowledge they store. For example, defeasible reasoning allows a model to assess a hypothetical diagnosis
and update it based on new information from a patient’s medical records. Inductive reasoning enables a model
to recognize patterns across observations from multiple patients, which could be valuable in medical research.
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Fig. 3. Side to side comparison of the models performance with a clinician performance
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When combined with abductive reasoning, the model could suggest possible explanations for unexpected find-
ings. Despite the potential, there are currently no datasets tailored to train models in these reasoning types
specifically for healthcare. Although previous studies such as Talmor et al., 2020; Conneau et al., 2018; Young
et al., 2022; Rudinger et al., 2020; Yang et al., 2024 have outlined methods for creating datasets for these
reasoning approaches, developing them for medical use would require substantial medical expertise, making
the process both time- and resource-intensive.

Self-improving methods like Chain-of-Thought, Chain-of-Hindsight, Self-Consistency, and Few-Shot Learn-
ing highlight the need to work with very large LLMs because high-level reasoning capabilities tend to emerge
only in these larger models. These techniques are not only complementary but can also generate high-quality
training data on their own, providing a self-sustaining cycle of improvement. Additionally, they are gener-
ally more robust and reliable than supervised approaches to reasoning and offer greater interpretability, as
they tackle problems by breaking them down and reasoning step-by-step. Supporting this, Singhal et al., 2023
demonstrated that these techniques can be particularly effective for encoding medical knowledge, bringing the
model’s performance closer to that of clinicians. However, as shown by Zhang et al., 2024, the performance
gap between large LLMs and small language models (SLMs) is still significant; even with optimization, SLMs
remain far from matching the capabilities of LLMs. Therefore, large LLMs remain essential for high-level
reasoning tasks, especially in complex domains like healthcare.
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